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1. Gene Expression Data

All cells of a multicellular organism contains the same set of genes. But their protein
make-up can be drastically different both spatially and temporally due to regulation.
Gene regulation is the process by which the conversion of the information stored
in genes to protein end product is controlled. Gene regulation can occur at three
distinct places in production of a gene product. Firstly, the transcription of the gene
can be controlled this is transcriptional regulation. Protein products can also be
regulated during transcription by transcriptional regulation. This switching on
and off of genes at various times make the cells of a multicellular organism so diverse.
With the advent of micro-arrays its now possible to get a snapshot of transcription
levels of different genes of a cell. This paved the way for discovering interaction
between different genes and other interactions using computational tools.

2. Bayesian Networks

Graphical models are special class of models used in statistical inference of system
having multiple interacting components. Bayesian network is a type of Graphical
model, Consisting of two components:

1. A Directed Acyclic Graph(G):whose vertices corresponds to random variables.

2. Parameters(θ):describe a conditional probability distribution of a vertex given
its parents in G.

In Bayesian interpretation probability measures a degree of belief. Bayes’ theorem
links the degree of belief in a proposition before and after accounting for evidence.
Let G be a proposition(graph and parameters) and D be the evidence(data) for it.

• P (G)- initial degree of belief in G.

• P (G|D)- the posterior is the degree of belief having accounted for D.

• P (D|G)- represents the support D provides for G.

Bayes’ Theorem states that:

P (G|D) =
P (G|D) ∗ P (G)

P (D)

log(P (G|D)) = log(P (D|G) + log(P (G))− log(P (D))

Since P (G) is same for all graphs it can be ignored, so the above equation can be
written as:

log(P (G|D)) = log(P (D|G)) + log(P (G)) (1)

The LHS is called the posterior. The first term on the right is called the log-
likelihood and the 2nd term is called log-priori.
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2.1. Mathematical Description

A Bayesian Network is a acyclic directed graph which describes a joint probability
distribution over a set of random variables(nodes) [3]. Let χ = (X1, X2, X3 · · · ) be a
finite set of random variables where each variable can take values from the domain
V al(Xi). Then the variables X1, X2, X3 · · · , denote the nodes of a DAG ′G′ and the
graph denote the conditional independence statements among the random variables.
They also encode the Markov Property, which means that any of the variables are
independent of its non-descendants given its parents in G. By applying the chain
rule of probability and the Markov property the joint probability distribution can be
reduced to the form:

P (X1, X2, ..., Xn−1, Xn) =
n∏

i=1

P (Xi|PaG(Xi)) (2)

Where PaG(Xi) denote the parents of Xi in G. The parameter θ for a node Xi is
the conditional probability of the node Xi given the state of its parents in G i.e.,
PaG(Xi).

2.2. Learning Bayesian Networks

Given a training set D = {x1, x2 · · · , xn} of independent instances of χ the problem is
to find a network G = {G, θ} that best matches D. Algorithms for learning Bayesian
network form a combination of user knowledge and statistical data. Learning algo-
rithms have two components a scoring metric and a heuristic search algorithm.

2.2.1. Scoring Metric

The Bayesian scoring metric is a way to evaluate how good a given network explains
the data. A scoring metric takes in a network, structured statistical data and user
priori knowledge to return a score proportional to the posterior probability of the
network given the data.

2.2.2. Search Method

Since the problem of searching for a network greater than a certain posterior score
is NP Complete [4] heuristic search methods are employed to optimize the posterior
score. We will be using one such method called the Genetic Algorithm, for searching
networks with higher posterior scores.

2.3. Priors

Inference in Bayesian networks boils down to parameter estimation and model se-
lection. Since we are more interested in the structure of the Gene Regulatory Net-
work(GRN) so we will be mainly focussing on the model selection part [2]. In Bayesian
setting model selection is done by sampling from the posterior using heuristic search
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algorithms. In equation (1) the posterior score is determined by two factors the log-
likelihood and the log priori term. The function of the prior term is to influence the
search towards networks which are consistent with biological prior knowledge.

2.3.1. Structure Prior:

There are many kinds of prior knowledge available about GRNs. A category of Prior
knowledge is having some knowledge about the structure of the GRN which we are
reconstructing. Having a knowledge about the structure of the final GRN structure,
preference can be given to structures with those properties so that the structure of
the final network might be influenced. Using the knowledge about the structure of
the GRN as a prior is known as structure prior.

3. Small World Prior

3.1. Problem and Motivation

DNA-micro array mRNA measurement data is extremely noisy and sometimes in-
complete. So it is not enough to reconstruct the GRN. With increasing sources of
other types of data it is now feasible to use those sources of data as priors for the
reconstruction. We will be using one such source of data, that is a structure prior.

A structure prior can be formulated by looking at some model organisms whose
GRNs are already reconstructed like yeast(Saccharomyces cerevisiae). One scientific
study reports that the yeast co-expression network has a scale-free, small-world ar-
chitecture [5]. And such architecture are common in biological networks in which the
nodes are connected when they are involved in the same biological process. So this
architecture is nothing special for yeast and can be expected in higher order organ-
isms also. We will be using small worldness property of GRNs as a structure-prior in
our reconstruction.

3.2. Mathematical Definition

A network(graph) G, consists of a edge set E and a vertex set V. For a connected
graph, for any two pair of nodes vi and vj(both belongs to V ) there may exists many
paths connecting vi and vj . We denote the smallest path by dij . The mean path
length(l) for a network is defined as the mean of dij for all pairs of vi, vj belonging
to V such that i 6= j.

lws =
1

N(N − 1)
·
∑

dij (3)

Where N denote the cardinality of V and the sum is overall pairs of vi, vj belonging to
V such that i 6= j. A small world network is a network for which the mean path length
grows no faster than the logarithm of the number of vertices. That is l = O(log(N)).
Small world network are a trade-off between random networks and regular networks
because they have short mean paths like random networks and high local clustering
like regular graphs. Since we will be using this a s the prior clustering needs to be

3



defined mathematically. Local clustering coefficient cws of node i is defined by Watts
and Strogatz [6] as :

cws =
2ei

ki(ki − 1)
(4)

where ei is the number of connected pairs between all neighbours of i and ki denotes
the number of neighbours of i. Actually its the ratio between the number of connec-
tions present between the neighbours of i and the maximum number of connections
can possibly exist. So its a number between 0 and 1. The global clustering coefficient
Cws is defined as the the average of the local clustering coefficient over all nodes of
G.

A network with n nodes and m edges is said to be small world if it has a com-
parable mean path length but has a higher clustering coefficient than a Erdos-Reyni
network with same parameters [7]. If lrand denote the mean path length of a Erdos-
Reyni network and crand denote the clustering coefficient of a Erdos-Reyni network
then the normalised parameters for G is given by:

cG =
cws

crand
(5)

lG =
lws

lrand
(6)

From the definition of a small world network above we know that the value of cG � 1
and lG ≥ 1. So if we define a metric, SG such that:

SG =
cg
lg

(7)

then for small world networks SG will be always greater than 1. To use the SG as a
small worldness prior we will use log(SG) as the log-prior term.

4. Network GA Sampler

The aim of the learning the Bayesian network from data and prior knowledge is to
find a network(or rather a equivalence class of networks) that scores the maximum.
But as stated above this problem is NP- complete. So heuristic search methods are
used to maximise the score. We will be using genetic algorithm to accomplish this
task.

4.1. Mathematical Description

In Genetic Algorithm a population of networks is evolved over a large number of
generation to ultimately form a population which is far more fit according to the
fitness metric used, than the initial population started with. We will be using the
posterior score of the graph as the fitness metric in this case. We denote crossover
rate as q ∈ [0, 1] and mutation rate as m ∈ [0, 1]. In each iteration of the algorithm
1-q fraction of the population having the highest posterior probability is promoted
to the next generation. This keeps the most fit organisms of a generation in the
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population. Then crossover is performed between pairs from rest of the population
to produce the offsprings for the next generation [8]. Then mutation is performed
on m fraction of edges of each network. Mutation involves changing the state of the
edge randomly. This might reduce the posterior score temporarily but it helps the
algorithm to avoid local maximas and explore more areas of the search space. After a
finite number of iteration the final population is formed which is then used to form the
GRN structure. If an edge is present in more than a certain fraction of the networks
in the final population then it is included in the final GRN or else its discarded.
This way the final GRN is formed. The details of the code will be discussed in the
Appendix part.

5. Appendix

Initially it was proposed that the ‘ddepn’library will be modified to include the small
world prior. But upon preliminary inspection the task was found to be quite elabo-
rate. And there was the problem of modifying a R library and testing it side by side,
for which no satisfactory methods could be found which could suit our needs. So we
tried to extract the source code and load the source code files in R. Then it came to
light that the authors of the ‘ddepn’had used C functions to speed up the iterations.
So we changed the code so that R equivalents of those C functions are used. But
unfortunately the R versions of these functions also didn’t work.

So that idea was abandoned and we started writing code from scratch and used
pieces of code from ‘ddepn’where ever it was found to be efficient. But the code
couldn’t be completed due to lack of time. The GA sampler is almost ready except
the mutation part, and as for the fitness function that is the scoring metric is not com-
plete. But the prior part is complete, although a simpler prior of clustering coefficient
is implemented in the code. We were trying to use the BDe metric [10] as the log-
likelyhood but the log-likelyhood function couldn’t be constructed due to lack of time.

5.1. Code Implementation Summary

• An initial population is created using the Watts-Strogaz game and stored in an
list.

• The fitness function is defined as the sum of the log-prior and log-liklyhood
scores.

• The log-prior term is defined as the log of the average local clustering coefficient
as defined in the Watts-Strogaz model.

• Then 1−q fraction of the most fit networks are promoted to the next generation.
The 1− q fraction of individuals is roundoff to the next even integer because we
need even number of individuals to perform the cross over.

• The crossover function takes in two adjacency matrix as input and returns
two adjacency matrix of the child networks. It divides the matrices along the
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diagonal and exchanges the two parts. The crossover parents are chosen from
the remaining networks randomly.
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