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1. Introduction

The understanding of blood flow dynamics is of immense importance in medical sci-

ence as it helps to understand the relation between blood flow and vascular diseases

and the change in flow characteristics under these circumstances. Some prosthetic

or extra-corporeal flow devices like Haemo-dialyser which mimic and provide re-

placement for some body processes can be improved by study of blood flow. Exact

mathematical description of blood flows can be quite complicated and almost im-

possible to solve but some simplified models can approximate the real situation to

a great extent.

The layout of the report is as follows: Section 2 describes some basic structures

an processes of human cardiovascular, Section 3 contains the detailed information

about blood rheology and constituents of blood. Section 4 deals with some basic

concepts of fluid dynamics. And lastly the mathematical models has been formulated

and solved in section 5 with a concluding note in Section 6.

2. Cardiovascular System

The human blood vascular system consists of:

i. The heart - this organ has muscular and elastic walls which contract and

relax rhythmically to maintain the oscillatory flow of blood through blood

vessels.

ii. The Arteries and arterioles - help to distribute oxygenated blood through-

out the body.

iii. The Capillaries - are in contact with cells, help to diffuse oxygen and nutri-

ents to tissues.

iv. The Veins and Venules - which collect back deoxygenated blood from the

body tissues.

Deoxygenated blood from the various parts of the body carrying metabolites enters

the right atrium through venacava, from there it goes to the right ventricle. When

the heart contracts, the tricuspid valve between the right atrium and the right

ventricle closes and blood is pushed to the lungs through the pulmonary artery,

which carries deoxygenated blood to the lungs where CO2 is removed and blood is

oxygenated. The oxygented blood return to the left atrium through the pulmonary

vein. This is defined as the pulmonary circulation. Oxygenated blood from the

left atrium goes to the left ventricle, from there due to contraction of the heart it
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is pushed into the aorta from which it travels to arteries and ultimately supplies

oxygen and nutrition to different living tissues in the body. This is defined as

systemic circulation. Apart from carrying O2 and nutrients to living tissues and

removing cellular wastes blood also maintains body pH and temperature and also

helps to fight infections.

3. Physical properties of blood

3.1. Constituents of Blood

Human blood is composed of

plasma and formed elements.

Formed elements comprise of

RBCs , WBCs and platelets.

Haemocrit is the percentage of

blood occupied by formed el-

ements. RBCs comprise of

99.9% of the formed elements

in number per unit volume,

rest .1% consists of WBCs and

platelets.

i. Plasma - Straw colored fluid which contains significant amount of dissolved

protein such as albumin, globulin and fibrinogen. It also contains regulatory

proteins, electrolytes, organic nutrient and organic waste.

ii. Red Blood Cells - These are biconcave disc shaped cells red in color and

have no nuclei at adult stage. 1µl of blood of a adult human contains about

4.5-6.3 billion RBCs. Their main function is to transport of respiratory gasses

(O2, CO2). They have aa average life time of 120 days and are generated in

the bone marrow.

iii. White Blood Cells - These are nucleated irregularly shaped cells mostly

white in color. They are of two types, granulocytes and agranulocytes. 1µl of

blood of a adult human contains about 6-9 thousand WBCs. They protect the

body from pathogens and also remove toxins abnormal and dead cells. They

are produced in bone marrow and also in lymph nodes.

iv. Platelets These are non nucleated flattened disk shaped cells, look round

when viewed from above. They carry enzymes and other essential substances
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for blood clotting. The average life time of a platelet is around 9-12 days.

These are also produced in bone marrow by magakaryocytes.

3.2. Blood Rheology

Blood is not a homogeneous fluid. It is a suspension of particles in plasma. Blood

also does not behave as a Newtonian fluid under all conditions. There are many

parameters which govern blood viscosity such as haemocrit, tube diameter, sheer

rate etc.Plasma in isolation can be treated as a Newtonian fluid. Blood as a whole

can also be treated as a Newtonian fluid at sufficiently high sheer rates(100 s−1),

which is the case in large arteries. Then the shearing stress and strain rate are

related as follows:

τ = µe (1)

But in veins and other blood vessels where shear rate is smaller(10s−1), blood tend

to behave as a Casson Fluid. It means that blood has a certain yield stress, no flow

of blood occurs below that yield stress. For small shear rates blood can be modeled

by Casson’s Equation.3

√
τ =
√
µe+

√
τ0 (τ ≥ τ0)

e =0 (τ ≤ τ0)
(2)

Where τ is the shear stress, e is the shearing strain rate, τ0 is a constant that

is interpreted as yield stress and µ is a constant. Experimental data for low

haemocrit(< .33) show excellent fitting with this model, but higher haemocrit(> .39)

deviations are evident. The yield stress is very small though, experimentally it is

found out to be in the order of .05 dyne/cm2. But in these models blood is con-

sidered to be homogeneous. In large blood vessels blood can be approximated as

homogeneous with negligible deviations, but in blood vessels with diameter compa-

rable to the size of blood cells(8µm)something strange occurs. Experimental data on

apparent viscosity of blood flowing in narrow glass tubes shows a striking decrease

as the tube diameter is reduced from 1 mm, a phenomenon known as Fahraeus-

Lindqvist effect.4 This phenomenon is caused by the tendency of blood cells to move

to the center of the blood vessel in capillaries(dia.4-10µm). In this case a 2 layer

model, a plasma layer(devoid of blood cells) near the vessel wall and a core layer

consisting of blood cells with different viscous properties is to be considered.
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4. Some basic concepts of fluid dynamics

Before we go into the details of the mathematical models for blood flow in human

blood vessels, few basic concepts of fluid dynamics is discussed below:

4.1. Continuity equation for In-compressible Viscous fluid

Continuity equation describes the transport or flow of a conserved quantity. In this

case it will be used to describe the flow of an in-compressible fluid. The differential

form of the continuity equation for a q amount of quantity in volume ′V ′ is given

by,

∂ρ

∂t
+∇ · j = σ. (3)

where ρ is the amount of q per unit volume, t is time, (∇·) denotes the divergence,

j is the flux of q and σ is the generation of q per unit volume per unit time. The

physical explanation behind this equation is quite simple, the sum of the change in

density of q per unit time and the divergence of flux of q is equal to the generation(or

destruction) of q per unit time per unit volume. In fluid dynamics we have, j = ρu

where v is the fluid velocity vector field and ρ is the fluid density. For in-compressible

fluid ρ is constant so (∂ρ/∂t) = 0. If the volume V contains no sources or sinks then

σ = 0. ρ being a constant we have,

∇ · v = 0 (4)

If vx(x, y, z, t), vy(x, y, z, t),vz(x, y, z, t) and p(x, y, z, t) denote the three velocity

components respectively and the pressure at the point (x, y, z) at time t with vis-

cosity coefficient µ then the mass-continuity equation for a viscous in-compressible

fluid becomes,

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (5)

4.2. Navier-Stokes Equation

Navier-Stokes equation is an important equation in fluid dynamics based on the

Newton’s 2nd law of motion, which is given by
∑ ~F = m~a. Considering a unit cube

of fluid and considering the 2nd law in X-direction, we have m~a = ρ(dvx/dt). Since
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v is a function of x, y, z and t so

dvx
dt

=
∂vx
∂t

+
∂x

∂t

∂vx
∂x

+
∂y

∂t

∂vx
∂y

+
∂z

∂t

∂vx
∂z

=
∂vx
∂t

+ u
∂vx
∂x

+ v
∂vx
∂y

+ w
∂vx
∂z

Now we have m~a = ρ(∂vx∂t + vx
∂vx
∂x + vy

∂vy
∂y + vz

∂vz
∂z ). For the other half of the

Navier-stokes Equation we need to find the sum of various forces like forces due

to pressure gradient, viscous forces and other external unbalanced forces. But the

effect of gravity is not considered since we are not sure of its direction, latter we

can introduce the gravity term into the equation. The force of gravity is given by

ρgdV . Pressure is a surface-stress5 always acting normal to the surface of the control

volume in a direction opposite to pressure gradient(direction of increasing pressure).

So the force due to pressure gradient is given by, Fp = −(∇ · p)dV . For considering

forces in one direction the right component of the gradient have to be used. Now

the equation becomes

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) =
∑

F ′x −
∂p

∂x

Another force in action is the viscous force. The force acting due shearing stress is

given by the (∇ · τ)dV . Unlike pressure which is a vector and has only one force

couples per direction, shearing stress is a tensor quantity which has three force

couples per direction.5 Including the viscous forces in the equation we get

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) =
∑

F ′′x −
∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

Now if we consider a Newtonian fluid where the shearing stress is always proportional

to the local shear rate, that is τ = µe at every point in the fluid. And strain is given

by e = −∂v/∂x, so

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) =
∑

F ′′x −
∂p

∂x
+ µ(

∂exx
∂x

+
∂eyx
∂y

+
∂ezx
∂z

)

=
∑

F ′′x −
∂p

∂x
+ µ(

∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
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The Navier-stokes equation for a viscous in-compressible Newtonian fluid is given

by

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

) =
∑

F ′′x −
∂p

∂x
+ µ(

∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)

(6)

ρ(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

) =
∑

F ′′y −
∂p

∂y
+ µ(

∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)

(7)

ρ(
∂vz
∂t

+ vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

) =
∑

F ′′z −
∂p

∂z
+ µ(

∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)

(8)

Solving these coupled partial differential equations using initial conditions and bound-

ary conditions we can find the velocity vector field. These are complicated enough

so cannot be solved analytically, only can be approximately solved using numerical

methods. We can simplify (6),(7) and (8) if the net external forces are set to zero

and consider the equations in 2-dimensions

ρ(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

) = −∂p
∂x

+ µ(
∂2vx
∂x2

+
∂2vx
∂x2

) (9)

ρ(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

) = −∂p
∂x

+ µ(
∂2vy
∂x2

+
∂2vy
∂x2

) (10)

4.3. Poiseuille flow

While picturing blood flowing through blood vessels the simplest situation that we

can think of is a fluid flowing steadily through a straight uniform rigid tube. So

the velocity has only one component, in the axial direction. Since the problem has

cylindrical symmetry we will consider the equations (5),(9) and (10) in cylindrical

polar coordinates.

1

r

∂

∂r
(rvr) +

∂

∂z
(rvz) = 0 (11)

ρ(
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

) = −∂p
∂r

+ µ(
∂2vr
∂r2

+
∂2vr
∂z2

+
1

r

∂vr
∂r
− vr
r2

) (12)

ρ(
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

) = −∂p
∂z

+ µ(
∂2vz
∂r2

+
∂2vz
∂z2

+
1

r

∂vz
∂r

) (13)

Now since velocity only has a non zero component in the z direction so vθ and vr are

zero. All velocity components are time independent. Therefore the mass continuity
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equation gives

∂vz
∂z

= 0

⇒ vz = v(r) (14)

and (12) and (13) gives,

∂p

∂r
= 0 (15)

µ(
d2vz
dr2

+
1

r

dvz
dr

)− ∂p

∂z
= 0 (16)

From (15) we know that p is a function of z only and from (16) we can conclude

that −(∂p/∂z) is a constant. Let that constant pressure gradient be denoted by p′,

then (16) becomes,

d2vz
dr2

+
1

r

dvz
dr

+
p′

µ
= 0

⇒ 1

r

d

dr
(
dvr
dr

) +
p′

µ
= 0

⇒
∫
d(r

dvz
dr

) = −p
′

µ

∫
rdr

integrating we get,

r
dvz
dr

= − p
′

2µ
r2 + C

⇒ vz(r) = − p
′

4µ
r2 + C ln(r) + C1 (17)

Now putting in the boundary condition that velocity on the axis must be finite, we

have C = 0 and from the no slip condition(v(R) = 0)we have C1 = (p′/4µ)R2 so,

vz(r) =
p′

4µ
(R2 − r2) (18)

The above velocity field is parabolic with the velocity at the axis being maximaum

and the velocity at the walls being zero. We can also calculate the flux from the

expression of the velocity. Flux Q is given by,

Q =

∫ a

0
2πr v(r)dr =

πp′

8µ
R4 (19)
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This can be used to experimentally determine µ.

4.4. Reynolds Number

Reynolds number is a dimensionless number which roughly determines whether the

flow will be turbulent or laminar. It is the ratio of inertial forces to viscous forces.

In equations (6),(7) and (8) the terms on the L.H.S denotes the inertial forces and

the R.H.S contains the viscous forces. So the Inertial forces are of the order ρv2L−1

and the viscous forces are of the order µvL−2. So dimensionally

Re =
ρv2L−1

µvL−2
=
ρvL

µ
= 1

So Reynolds number is dimensionless and can be use to predict the type of flow.

Typical flows in straight pipes having Reynolds number below 2000 are laminar.

When Reynolds number is large then the inertial forces are large as compared to

the viscous forces, which tend to diffuse the fluid causing turbulence. But in case of

blood, the flows remain laminar even at Reynolds number as high as 5000 or more.

4.5. Inlet length and plug flow

The velocity profile for a fully developed Poiseuille flow in a straight tube is parabolic.

But before the fluid enters the tube then the velocity profile is straight and parallel

to the axis of the tube. The fluid must pass though a finite length in the tube to

attain the parabolic velocity profile. As soon as the fluid enters the tube the fluid

layer next to the tube wall will be forced to have zero velocity and in turn it will

apply shearing force in the next layer. this will tend to form the velocity gradient

in the radial direction, the flow will tend to achieve the parabolic velocity profile

asymptotically. Entrance length is defined as the length of the tube in which 99 %

of the final velocity profile is achieved.2 The flow in the entry length consists of two

parts, the region near the wall which is called the boundary layer and the layer near

the center called the core flow or plug flow.6 It can be proven that the entrance

length is proportional to the Reynolds number.

4.6. Bernoulli Equation

Bernoulli’s equation can be called an form of the energy conservation principle. The

equation states that the sum of the pressure energy, kinetic energy and potential

energy in a fixed volume of fluid flow remains conserved. Mathematically,

p+ ρgz +
1

2
ρv2 = constant (20)
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This is particularly helpful when the cross-section of the blood vessel changes, so

the pressure and velocity change can be found out through out this equation.

Stenososed Artery

Stenosis is narrowing of the arterial lumen due to plaque deposition or other types of

abnormal tissue development. Since the flux remains constant while flowing through

a constriction so A1v1 = A2v2. Since the cross-section decreases so the velocity has

to increase in a constriction hence the kinetic energy increases causing the pressure

to fall, which in turn causes the stenosis to grow.

Aneurysm

An aneurysm is caused by the weakening of arterial wall where a bulge occurs and

the cross-section of the blood vessel increases considerably. Due to increase in cross-

section the velocity hence the kinetic energy falls, causing a pressure rise. This

further causes the bulge to increase which might ultimately cause the blood vessel

to burst.

5. Blood Flow models

5.1. Steady non-Newtonian flows in cylindrical tubes

1 unit

dr

r

We consider a laminar flow of a non-Newtonian fluid flowing through a cylindrical

tube under a constant pressure gradient p′. The control volume is bounded by two

cylinders of unit length and of radius r and r + dr. Due to the pressure gradient

the forward force on the control volume is p′ × 2πr × dr. The shearing stress, τ(r)

produces a force on the surfaces of the control volume. The force on the inner

surface F (r) = 2πrτ since the length of the cylinder is one unit. Now the force on
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the outer cylinder is,

F (r + dr) = F (r) + F ′(r) ·∆r

= 2πrτ + 2π
d

dr
(rτ)dr

balancing force on the axial direction we have,

2π
d

dr
(τr) · dr = p′2πr · dr

⇒
∫
d(τr) =

∫
p′r · dr

⇒τr =
1

2
p′r2 + C

⇒τ =
1

2
p′r +

C

r

The stress is finite at r = 0 therefore C = 0. So,

τ =
1

2
p′r (21)

We know that strain e = −(dv/dr). For a non-Newtonian fluid τ = f(e) so we have,

1

2
p′r = f(−dv

dr
) (22)

Integrating (22) subjected to the boundary conditions that v = v at r = 0 and v = 0

at r = R we can have v as a function of r. Once we have v as a function of r we can

calculate the flux.

j =

∫ R

0
2πr · v(r)dr

Integrating by parts we have,

j = 2π

{[
r2

2
v

]R
0

−
∫ R

0

r2

2

dv

dr
dr

}

= π

∫ R

0
r2(−dv

dr
)dr

= π

∫ R

0
r2e · dr
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5.1.1. Steady flow for Herschel-Bulkley fluid in a cylindrical tube

For a Herschel-Bulky fluid the sheering stress and the strain rate are related as:

τ = τ0 + µen (τ ≥ τ0)
e = 0 (τ ≤ τ0)

Core layer

Marginal layer

R

rc

Figure 1. 2 layer model

In this model we have two layers, marginal layer close to the wall and a core layer.

In the core region τ ≤ τo so the strain rate is zero so the velocity gradient in the

radial direction is zero. So the core layer flows as a plug, with a constant velocity

profile. Let the radius of the core is rc and the radius of the tube is R. At the

surface of the plug the stress is τ0.We consider the control volume to be a cylinder

of unit length and of radius rc. Equation the forces on the control volume in the

axial direction we have:

p′ · πr2c = τ0 · 2πrc

⇒ τ0 =
1

2
p′rc

In the non core region, the equation (22) becomes:

1

2
p′r = µen + τ0

⇒ e =

[
(1/2)p′r − τ0

µ

]1/n
=

[
p′

2µ

]1/n
(r − rc)1/n

⇒ dv

dr
= −

[
p′

2µ

]1/n
(r − rc)1/n
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integrating we have:

⇒ −
∫ 0

v
dv =

[
p′

2µ

]1/n ∫ R

r
(r − rc)1/ndr

⇒ v =
n

n+ 1

[
p′

2µ

]1/n [
(R− rc)n+1/n − (r − rc)n+1/n

]
(23)

Using boundary condition v = vc at r = rc in (23), where vc is the velocity of the

core layer:

vc =
n

n+ 1

[
p′

2µ

]1/n [
(R− rc)n+1/n

]
vc =

n

n+ 1

[
p′

2µ

]1/n
R1+ 1

n

[
(1− rc

R
)n+1/n

]
(24)
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Figure 2. Relative variation of vc with kc for various n

Now let, rc
R = kc. From (24) we obtain:

vc =
n

n+ 1

[
p′

2µ

]1/n
R1+ 1

n

[
(1− kc)n+1/n

]
(25)
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Relative variation of vc with kc for various n is plotted in Fig (2). From the graph

we can see that the velocity of the core layer vc decreases with increasing rc and τ0.

Total flux through the tube is given by:

j = πr2cvc +

∫ R

rc

2πrvdr

= πr2cvc + 2π
n

n+ 1

[
p′

2µ

]1/n ∫ R

rc

[
r(R− rc)n+1/n − r(r − rc)n+1/n

]
dr

integrating by parts we obtain:

=πr2cvc + 2π
n

n+ 1

[
p′

2µ

]1/n
(R− rc)1+1/n 1

2

[
R2 − r2c

]
− 2π

n

n+ 1

[
p′

2µ

]1/n [ n

2n+ 1
(r − rc)

1
n
+2 − n

(2n+ 1)

∫
(r − rc)

1
n
+2dr

]R
rc

=π
n

n+ 1
r2c

[
p′

2µ

]1/n [
(R− rc)1+1/n

]
+ π

n

n+ 1

[
p′

2µ

]1/n
(R− rc)1+1/n

[
R2 − r2c

]
− 2π

n

n+ 1

[
p′

2µ

]1/n [ n

2n+ 1
(r − rc)

1
n
+2 − n2

(2n+ 1)(3n+ 1)
(R− rc)

1
n
+3

]
=π

n

n+ 1

[
r2c (R− rc)1+1/n + (R2 − r2c )(R− rc)1+1/n

− 2n

2n+ 1
R(R− rc)2+1/n +

2n2

(2n+ 1)(3n+ 1)
(R− rc)3+1/n

]
=π

n

n+ 1
R3+1/n

[(rc
R

)2 (
1− rc

R

)1+1/n
+

{
1−

(rc
R

)2}(
1− rc

R

)1+1/n

− 2n

2n+ 1

(
1− rc

R

)2+1/n
+

2n2

(2n+ 1)(3n+ 1)

(
1− rc

R

)3+1/n
]

(26)

now let kc = rc
R , now from eqn (26) we obtain,

j =π
n

n+ 1

(
p′

2µ

)
R3+1/n

[
(kc)

2(1− kc)1+1/n + (1 + kc)(1− kc)2+1/n

− 2n

2n+ 1
(1− kc)2+1/n +

2n2

(2n+ 1)(3n+ 1)
(1− kc)3+1/n

]
=π

n

n+ 1

(
p′

2µ

)
R3+1/nf(kc) (27)

So the flux for steady flow of a Herschel-Bulkley fluid through a circular cylinder

is given by the equation (27). In Fig (5.1.1.) the relative variation of j with kc for
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different n is shown. Its obvious from the plot that, with the increase kc i.e. increase

of yield stress the total flux decreases in general for different n.
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Figure 3. Relative variation of j with kc for different n

It also means that flux decreases with increasing radius of core layer, though the

core layer has maximum velocity. This is because with increasing τ0 velocity of the

core layer also decreases.

5.1.2. Steady flow for Casson fluid in a cylindrical tube

For a Casson fluid we have τ1/2 = τ
1/2
0 + (µe)1/2. Rearranging we have:

⇒ e =

(√
p′r
2 −

√
p′rc
2

)2

µ

⇒ −dv
dr

=
p′

2µ

(√
r −
√
rc
)2
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integrating we have:

−
∫ 0

v
dv =

p′

2µ

∫ R

r
(r + rc − 2

√
r · rc) dr

⇒ v =
p′

2µ

[
r2

2
+ r · rc −

4

3
r3/2r1/2c

]R
r

⇒ v =
p′

2µ

[
R2

2
− r2

2
+R · rc − r · rc +

4

3
R3/2r1/2c − 4

3
r3/2r1/2c

]
(28)

using boundary condition, v = vc when r = rc:

vc =
p′

2µ

[
R2

2
− 4

3
R3/2r1/2c +R · rc −

1

6
r2c

]
=
p′R2

4µ

[
1 + 2

rc
R
− 8

3

(rc
R

)1/2
− 1

3

(rc
R

)2]
(29)

let rc
R = kc therefore, from equation (29) we have:

vc =
p′R2

4µ

[
1 + 2kc −

8

3
k1/2c − 1

3
k2c

]
=
p′R2

4µ
· f(kc)
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We know that kc = rc
R = 2τ0

p′R , therefore for τ0 = 0 we have [vc]τ0=0 = p′R2

4µ

vc
[vc]τ0=0

= f(kc)

From the figure we can see the relative variation of vc with kc. The graph shows

that the plug velocity decreases till kc reaches 0.6 then it it remains almost steady

with increasing kc. The flux through the cylindrical tube is given by:

j = πr2cvc + π
p′

µ

∫ R

rc

r

[
R2

2
− r2

2
+

4

3
R

3
2 r

1
2
c −

4

3
r

3
2 r

1
2
c +Rrc − rrc

]
= πr2cvc + π

p′

µ

∫ R

rc

r

[
rR2

2
− r3

2
+

4

3
R

3
2 r

1
2
c r −

4

3
r

5
2 r

1
2
c +Rrcr − r2rc

]
= πr2cvc + π

p′

µ

[
r2R2

4
− r4

8
+

2

3
R

3
2 r

1
2
c r

2 − 8

21
r

7
2 r

1
2
c +

1

2
Rr2rc −

1

3
r3rc

]R
rc

= πr2cvc + π
p′

µ

[
− 1

8
(R4 − r4c )−

8

21
r

1
2
c (R

7
2 − r

7
2
c )− 1

3
rc(R

3 − r3c )+

2

3
R

3
2 r1/2c (R2 − r2c ) +

1

2
Rrc(R

2 − r2c ) +
1

4
R2(R2 − r2c )

]
(30)
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Figure 4. 2 layer model
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Using the previous substitution of kc = rc
R , we obtain:

j = π
p′R4

4µ
k2c

[
1 + 2kc −

8

3
k1/2c − 1

3
k2c

]
+ π

p′

µ
R4

[
− 1

8
(1− k4c )−

8

21
k

1
2
c (1− k

7
2
c )

− 1

3
kc(1− k3c )−

2

3
k

1
2
c (1− k2c ) +

1

2
kc(1− k2c ) +

1

4
(1− k2c )

]
(31)

= π
p′R4

4µ
f(kc) (32)

This is the expression for flux for steady flow through a cylindrical tube for a Casson

fluid. From the plot of j vs kc it can be observed that the flux decreases till kc reaches

0.7 then it increases slightly. This is in good agreement with the variation of vc with

kc.

6. Conclusion

In this study we have modeled the blood flow blood vessels. In this model we have

considered blood to be Newtonian when the strain strain rate is large, which is

the case in large arteries. The non-Newtonian properties of blood also has been

considered for low strain rates blood, when blood flows through narrow arteries.

Blood flow through narrow blood vessels is conciderd to be bi-layered. Casson fluid

and Herschel-Bulkley fluid model have been used to study this bi-layered model of

blood. Casson fluid model can be used to explain velocity profile for moderate strain

rates which occur in arterioles of diameter around .1mm. But velocity profiles in

even smaller arterioles whose diameter are less than 0.065mm deviate significantly

from the Casson fluid model, but can still be explained by Herschel-Bulkley fluid

model.7 Thus in this study we have used both of the fluid models in appropriate

situations to get a fuller picture. The model discussed here can be made more

realistic by considering other characteristics of blood flow like pulsatile nature of

blood flow, visco-elastic properties of blood, elastic nature of blood vessels and their

unusual curvature.
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