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ABSTRACT

Geometric optical illusions are studied. A basic structure of the visual system is defined. A
structures of the underlying perceptual space is developed based on the above definitions.
A few well known illusions are studied with assuming this nature of the perceptual space.

The model is tested for limitations. The model performs reasonably well for all but contrast
illusions. A few ways of solving this limitation are discussed which are present in the literature.
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1
INTRODUCTION

V isual information received by the retina is passed on to the lateral geniculate nu-

cleus(LGN), and finally, the information reaches the Visual Cortex. A primary problem for

vision psychologists was to determine the extent to which visual perception depends on

the raw stimulus. There are two popular paradigms of visual perception found in literature, the

top-down processing and the bottom’s up processing. The bottoms-up paradigm is a data-driven

process. It is presumed that the raw stimulus contains all the necessary information and visual

perception occurs by processing the raw input by successive structures in the visual pathway. In

the top-down paradigm visual perception is theorised to be an experience driven process. In the

top-down approach, it is assumed that the raw precept is ambiguous, so prior knowledge about

the outside world is required to draw an unambiguous inference about the raw stimulus. A major

flaw in the bottom-up paradigm is its inability to explain Visual Illusions. If the raw precept was

truly unambiguous then there would be no scope for misinterpretation, that is to say, there would

be no illusions. Visual illusions are a strong evidence in favour of the top-down approach since

they affirm that prior knowledge is required for visual perception.

Visual illusions have been studied extensively from the middle of the 19th century. Recently

in the field of Computer Vision and Pattern recognition, the study of visual systems of humans

and other animals have gained importance due to the fact that biologically inspired models are

mostly simple and effective. Visual Illusions are an effective way of studying vision systems

since they reveal the prior knowledge built into the vision system. The prior knowledge or the

assumptions and biases that any biological vision system uses to draw meaningful insight into

the raw stimulus makes it so much better than any human reproduction of a vision system.

In Psychological Research visual illusions are believed to be complex phenomena involving

higher order information processing in the visual cortex. As the phenomena occur at the percep-

1



CHAPTER 1. INTRODUCTION

tual level it is beyond the structure or mechanism of the visual receptors. However, these higher

level interactions in the visual cortex are difficult to represent mathematically[3]. But many

prominent illusions like the Mach Band illusion, Simultaneous Brightness-contrast Illusion, Grat-

ing induction illusion, the Hermann grid illusion and the White effect [5] have been explained

satisfactorily on the basis of low-level interactions in the retina and the Lateral Geniculate

Nucleus.

In the study of visual space[11][2] by Luneberg and Blank the authors showed that geom-

etry of perceptual space is different from physical space. In fact, they went on to claim using

mathematical modelling, that the visual space is, in fact, hyperbolic in nature. The model was

based on the evidence provided by Blumenfeld Alley experiment. Although this study was for an

unperturbed visual system. That is the alley experiments were performed in the dark without

visual cues. And the authors made it clear that they have only checked the evidence for an

unperturbed system. Also, the modelling of visual system by Luneberg and Blank was for a

binocular system.

In this study, we will study the nature of the perturbed perceptual space[8], where the

perturbation is in the form of a visual illusion. We limit our study to geometric visual illusions2.1.6

only. Towards the end of the study we will see that the model can successfully explain many of

the known geometric illusions, although it fails in case of a particular kind of geometric illusion

namely the contrast illusions4.2.1 we understand qualitatively that why it fails. And we see a

few techniques where they solved a similar problem.

2
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2
DEFINITIONS

2.1 Definitions

Let start off with some definitions first. This is necessary because these terms are sometimes

used in layman language and may mean different things to different people. So to avoid misinter-

pretation it is better to make define things clearly.

2.1.1 What Is perception?

We rarely encounter ambiguity in our daily thought process and perception. Thus it seems to us

that our perception of the world is absolute, not open to interpretation. This is because we are

not consciously aware of most of the ambiguities that are confronted during the reconstruction of

a hypothesis of the physical reality from sensory data. Sensory data is inherently ambiguous,

open to many interpretations or hypotheses. There is a strikingly large amount of contribution

from the brain that helps us to infer a particular hypothesis(or few, in some rare cases) from

sensory data. We are consciously aware of only this inferred hypothesis. So in the words of

the 19th-century German psychologist and physicist, Hermann von Helmholtz perceptions are

"unconscious inferences" about the outside world from sensory data[12].

2.1.2 Visual Perception

Visual perception is the ability to interpret the physical reality by processing information that is

contained in visible light. This may be treated as a manageable definition of Visual Perception

although our perception of the physical reality is often enriched by input or experience from

other sensory organs. For example, our perception of 3-d objects is enriched by the experience

from our sense our touch. Thus it is very difficult to separate out and define each form of human

3



CHAPTER 2. DEFINITIONS

perception individually as they seem to work in perfect symbiosis, enriching our perception of

physical reality as a whole. Early vision or Low-level Vision is a set of visual modules that aim to

extract a few features about the scene which are essential for scene understanding. High-level

visual perception completes the job of producing a coherent interpretation of the image from the

features extracted in low-level vision. We are mainly concerned about early vision because we are

at a stage where we don’t have a proper foundation of early vision so that we can build high-level

vision on top of that.

2.1.3 Early Vision and its Problems

The Vision problem as a whole is an inverse problem. We know the effects of the outside world on

our retina and we need to find out the causal factors of the effects produced on the retina[14].

This problem is a "ill-posed problem" in the sense defined by Jacques Hadamard. A well-posed

problem in this notion has to satisfy three properties, namely:

1. A solution exists

2. The solution is unique

3. The solution’s behaviour changes continuously with the initial conditions.

In most cases is the solution is not unique, that is a particular retinal image can correspond

to many possible scenes in the physical reality. For some cases, the solution is unique but does

not vary continuously with the input. For example, edge detection is mainly a problem of numeric

differentiation. The problem is ill-posed because the solution doesn’t vary continuously with

the input[14]. A lot of information is lost while projection of the outside 3-d world into a curved

two-dimensional retinal surface. one of the prime reasons why the problem is ill-posed.

2.1.4 How is it solved by Nature?

The principal idea behind solving "ill-posed" problems is to restore the "well-posedness" in the

problem by restricting the space of admissible solutions, by using a suitable "prior" information.

This process of converting an ill-posed problem into a well-posed one by restricting the solution

space is called "regularisation". Human visual perception relies on constraints or biases about

the physical reality to regularise the early vision problem. So top-down apriori knowledge is

essential to provide meaningful insight into retinal images.

2.1.5 Illusions

Richard Gregory aptly stated it "it is surprisingly hard to define ’illusion’ in a satisfactory way"[7].

Although we will consider the following definition for our purpose: When perceptions depart

from external world or disagrees with physical reality we experience an illusion. As discussed in

4



CHAPTER 2. DEFINITIONS

?? our visual system uses apriori assumptions to solve the ill-posed early vision problem. But

these assumptions are violated under certain special conditions. So our perception departs from

the physical reality under these conditions. Then we experience an illusion. This is one of the

principal reasons people study visual illusions. They reveal where the assumptions or biases of

the visual system fails. So, in turn, they provide insight into what those assumptions might be.

The visual system can be satisfactorily modelled if a sizable number of these biases can be built

into a model, or in other words, regularise the vision problem as the visual system does it.

2.1.6 Geometric Optical Illusions

Optical illusions or Visual illusions are a special class of illusions when our visual perception

departs from the physical reality. Geometric illusions are a type of optical illusion when geometric

properties of the precept differ from physical reality. The geometric properties can be anything

shape, size or imaginary extension of a figure. A reason for studying geometric illusions is to

understand the geometrical structure of human visual space, and how that structure changes

under perturbations. This is a top-down approach objective. Of course, another reason is to

understand the role of the low-level vision machinery in causing the illusion. And these cases

are suitable for mathematical analysis as the mathematics of geometry of a space is quite well

developed and has lots of tools for analysis.

5
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3
MATHEMATICAL MODEL

3.1 Mathematical Model

In this chapter we are going to discuss the mathematical model that we think is suitable for

explaining Geometric Optical Illusions. Firstly, we will see what are the basis for considering such

a model. Next, we will move on to the assumptions and formulation of a metric for a perturbed

visual space. Finally, we will see how to draw geodesics on this perceptual space, this mimics the

process of imagining an extension of a line in the perceptual field.

3.1.1 Basis of the Model

We know that visual information projected on the retina is transmitted to the visual cortex

through Lateral Geniculate Nucleus(LGN) finally to the Visual Cortex. On each level of the visual

system, each receptor or neuron has connection with some(more than one) receptors in the retina.

That is each neuron in the Visual Cortex or the LGN receives signal from a number of receptors

in the retina. The receptive field of a receptor or neuron is the region in the visual field which

when stimulated creates a response in that particular neuron or receptor. Information required

to infer properties of the external world is contained in the relationship between the intensity

values of different points in the intensity profile of the stimulus rather than the intensity at an

isolated point. This is due to the fact that the intensity profile of the incoming light is an indirect

source of information about the objects in the external world. So the relationship between the

intensity values between different points provides a clue about the nature of the external world.

So it is likely that the retinal intensity image is perceived by the neurons in the visual cortex

by interacting with each other[9]. So we assume that the "perceptual image" is a function of the

retinal intensity image.

6



CHAPTER 3. MATHEMATICAL MODEL

3.1.2 Assumptions for the Model

A neuron in the visual cortex can be excited by stimulating a fairly large region in the retina.

We assume the state of excitation of the neurons in the visual cortex represents the "perceptual

image". We don’t claim that this is actually perceived, but analysis of this perceptual image can

provide insight or low-level features about the scene. In order to make the analysis easier, we

assume that the neural system is uniform, continuous and can be approximated by a linear model.

We will try to formulate a metric of the perceptual space based on these assumptions.

3.1.3 Formulation

We consider two Cartesian co-ordinate systems, a (x, y) coordinate system of the field of perception

and a (ζ,η) coordinate system of the image. Let a field potential of g(ζ− x,η− y) be induced at

a point (x, y) in the field of perception for unit stimuli at a point (ζ,η) on the image. Therefore

influence on point (x, y) due to h(ζ,η) on (ζ,η) is g(ζ−x,η− y)·h(ζ,η). Since we assumed the system

is linear, superposition of effects of all such (ζ,η) will be the sum of all such effects.

(3.1) P(x, y)= q+
∫ ∫

h(ζ,η) · g(ζ− x,η− y) ·dζ ·dη

Where q denotes spontaneous activity. q should change with background brightness and adapta-

tion. Although we assume it to be constant for easier analysis. Relative intensity in the perceptual

field represents light and shade of the pattern.

3.1.4 Distance in Perceptual Field

We consider the case when the neural signal passes between two points in the perceptual field.

We assume that the signal passes quickly through a region of highly activated neurons in the

perceptual field. On the other hand, the signal passes slowly through a region of mildly activated

neurons in the perceptual slowly. Taking the above argument into account, it is easy to see that

the perceived distance between two points in the perceptual field will be small if the region in

between them is highly activated and vice versa. Therefore the perceived distance differs from

the physical distance on the image. The unit length on each point of the perceptual field is defined

as the length corresponding to a unit length on the image at the corresponding to that point

on the image. D(x, y) be the function representing unit distance in the perceptual image. As we

discussed in above it should be a function of the perceptual image satisfying the above criterion

of distance perception. Therefore:

(3.2) D(x, y)= F[P(x, y)]

Therefore, the length of a path γ between two points A, B on the perceptual field will be given

by:

(3.3) DAB =
∫
γ

D(x, y)ds

7



CHAPTER 3. MATHEMATICAL MODEL

This formulation gives us a metric on the perceptual space. Hence we can study the various types

of geometric optical illusions. We will analyse different geometric optical illusions and see if the

perceived distance from predicted by model matches with what we actually perceive.

3.1.5 Geodesics in Perceptual field

Now we have a metric on the perceptual space. The next thing that we will try to mimic is our

capability to extend actual lines with our imagination. Straight lines between two points in any

field are geodesics, that is a path of minimum distance in that field. Therefore let ′γ′ be a path of

minimum distance(as calculated in eq:(3.3) between two points on the perceptual field. Now:

ds =
√

(dx)2 + (d y)2

=
√

1+ (
d y
dx

)2 dx

Therefore eq:(3.3) can be written as:

DAB =
∫
γ

D(x, y)
√

1+ (y′)2 dx(3.4)

(3.1.5) The integrand of eq:(3.4) is a function of x, y and y′. That is DAB = f (x, y, y′). Therefore the

path γ(y(x)) that minimizes the path integral must satisfy the Euler-Lagrange equation(3.5):

∂ f
∂y

= d
dx

(
∂ f
∂y′

)
(3.5)

=⇒
√

1+ (y′)2 · ∂D
∂y

= d
dx

(
D(x, y) · y′√

1+ (y′)2

)
(3.6)

Since x, y and y′ are independent till we know the path,that is y(x). Now let the angle between

the minimum path and x-axis be φ, refer fig:3.1.

∴ y′ = tan(φ)

=⇒ sin(φ)= y′√
1+ (y′)2

(3.7)

(3.8)

So using substituting eq:3.7 in eq:3.6 we get:

(3.9)
∂D
∂y

= d
ds

(
D(x, y) ·sin(φ)

)
The equation D(x, y) = c represents a plane curve in the (x, y) plane. Let ′O′ be a point on the

geodesic. We define the direction of the x-axis at the point ′O′ to be in the direction of the normal

to the curve D(x, y) at the point ′O′. The the normal to D(x, y)= c at ’O’ is given by ∇D(x, y)|O.

8



CHAPTER 3. MATHEMATICAL MODEL

Figure 3.1: Figure of the plane curve (D(x, y)= c) and the geodesic. the continuous line denotes
the plane curve and the dashed line denotes the geodesic.

∇D(x, y)= k · î

=⇒ ∂D
∂y

= 0

From eq:3.10 and eq:3.9 we have:

d
ds

(
D(x, y) ·sin(φ)

)= 0(3.10)

∴D(x, y) ·sin(φ)= constant(3.11)

A neuron in the perceptual space receives information from a fairly large retinal region, this

is called the receptive field of that neuron. We assume that the receptive field of a neuron is

similar to the receptive filed of a on-center off-surround retinal ganglion cell. Therefore the

9



CHAPTER 3. MATHEMATICAL MODEL

spatial coupling function g(ζ− x,η− y) is given by:

g(ζ− x,η− y)= k1

2πσ2
1

exp

[
− (ζ− x)2 + (η− y)2

2σ2
1

]
(3.12)

− k2

2πσ2
2

exp

[
− (ζ− x)2 + (η− y)2

2σ2
2

]
(3.13)

If a neuron has this kind of center-on surround-off receptive field, then it is excited if the

receptive cells in the centre of the field are stimulated and are inhibited if the peripheral cells

are stimulated.The spatial filtering function for the off-center on-surround cells could also be

considered in this case but the mathematical representation would have been quite similar. The

retinal ganglion cells are located on the inner surface of the retina, and they are the first neurons

in the visual pathway.

Now everything is in place except for the function mention in eq:3.2. From the discussion

in section 3.1.4 it can be easily seen that the simplest function that satisfies the above mention

criteria is the inverse function. Therefore:

F[P(x, y)]= 1
P(x, y)

(3.14)

=⇒ D(x, y)= 1
P(x, y)

(3.15)

Now we can explicitly calculate the distance between two points and draw the imaginary extension

of a real line on the perceptual field. In the next chapter, we will study some know geometric

illusions using this structure of the perceptual space.

10
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4
SIMULATIONS AND RESULTS

4.1 Simulation of Known Illusions

In this chapter, we are going to start with simulation of some known illusions like the Müller-Lyer

Illusion and the Poggendorff Illusion. Then we will test the model for defects. Finally, we well see

that it seems that the model fails to explain a class of illusions known as the contrast illusions.

We are not so sure due to lack of experimental evidence.

4.1.1 Müller-Lyer Illusion

The Müller-Lyer Illusion is one of the best known Geometric illusion, which is being studied since

its discovery in the end of the 19th century. In its present form, the figure consists of a pair of

stylised arrows. The longer straight line segments are called the "shafts" of the arrows, while

the shorter line segments protruding form the end of the shafts are called the "wings". The end

with outward wings is called a "tail" and the one with inward wings is called a "head". The angle

between the shaft and the wings is called the fanning angle. So the fanning angle for a head end

is acute and that for a tail end is obtuse. The figure 4.1 is the demonstration of the illusion.

When viewers are asked to compare the length of the shafts of the two arrows, they perceive

the line segment above with tails at both ends to be longer than the line segment with the heads

at both ends. In both the cases we consider the length of shaft, but the presence of the wings

create a distortion of our sense of length.

There is another form of the same illusion, the form in which it was first devised. The

illusionary figure consists of a shaft with a head and a tail and the viewers are asked to place a

marker in the centre of the shaft. They invariably place it closer to the tail end. Nevertheless, we

will study the illusion in its present form only, because the mathematical analysis is more or less

11
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Figure 4.1: The Müller-Lyer Illusion

the same.

Now let us get down to how the simulation is performed. The perceptual image, P(x, y) is

obtained from the original Müller-Lyer image by convolving the image with the DOG spatial

filtering function. Figure 4.2 represents the perceptual image. Where the input image has size

200x200 pixels. The function used for filtering is g(ζ− x,η− y) as described in equation (3.12).

12
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Figure 4.2: Müller-Lyer Illusion Perceptual Image
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For the simulations we have taken the following constants:

• k1 = 1

• k2 = 1

• σ1 = .28

• σ2 = 0.55

• 2n+1 is the kernel width. n = 20.

• ζ,η varies between n to −n for each (x, y).

The contour plot of the perceptual image is shown in the figure4.3 The length of the shafts in

Figure 4.3: The Müller-Lyer Illusion Contour Plot

both the cases was calculated by taking a path integral over the line segment with the potential

of the perceptual field, as per eq:3.4.The end-points of the path integral was chosen manually by

locating(eye estimation) the centre of the maxima near the end of the shaft in the contour plot of

the perceptual image. The integral over the head figure will be smaller than the tail figure. In a

sample run with the above parameters, the difference in length between two illusionary figures

of fanning angle 45◦ and 135◦ was found to be around 15% of the average perceived length of the

two shafts. The shaft of the figure with fanning angle of 45◦ had a smaller perceived length than

the 135◦ one. To investigate the illusion in detail we performed the simulation on various Müller

Lyer figures by modifying the fanning angle, i.e. the angle between the shaft and the wings. The

14
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fanning angle(angle between the shaft and the wings) was varied between 15◦ to 165◦ in 15◦

intervals. The results of the simulation are shown in figure:4.4.

Figure 4.4: Müller Lyer Simulation Results

In figure4.4 we can see that the percentage deviation(the deviation between the Müller Lyer

shaft and control line of the same length as a percentage of the length of the control line) is a

increasing function of the fanning angle. In the next chapter we will see some experimental data,

which will show that this is actually the case, qualitatively.

4.1.2 Poggendorff Illusion

This is a very simple Geometric Optical Illusion, that involves the misperception of the position

of one segment of a transverse line that has been interrupted by the contour of an intervening

structure. In its present form, it consists of a pair of vertical straight line segments, intersected

by a slanting line segment. But the slanting line is not continued in-between the two parallel

lines. For better visualization refer to figure4.5. In this figure, it seems as if the two parts of

the slanting straight lines are not part of the same straight line but this is not the case. It was

discovered in the late 19th century. Although it is not so well studied as the Müller-Lyer Illusion

but it is suitable our purpose. The theory developed in section3.1.5 of extending straight lines

with imagination in the perceptual field can be tested on this illusion.

Firstly the perceptual image was created by convolution with the spatial filtering mentioned

in equation(3.12). Then the drawing of the imaginary line on the Poggendorff figure was simulated

using the iteration condition derived in the equation 3.11. Starting with an initial point on the
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Figure 4.5: The Poggendorff Illusion Figure

slanting line, where the direction of the geodesic and the local coordinates is known. Then a small

step is taken in the direction of the geodesic and the φ at that point is calculated. The angle φ is

relative to the local coordinates of the second point. From φ at the second point, the direction

of the geodesic at that point can be calculated. The iteration can be continued in this way to

calculate the path of the geodesic on the perceptual image. The contour plot of the perceptual

image along with the geodesic is shown in figure 4.6.

Figure 4.6: The Poggendorff Contour plot and the simulated Geodesic
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From the results of the simulation, it can be seen that at the junction with the parallel lines

the geodesic bends away from the "straight" path. So it can be said that the imaginary extension

of the slanting line bends away from the "straight line" in the euclidean sense. This also matches

with what is reported in literature.

4.2 Testing the Model

From the above discussion, we can easily deduce that the model works satisfactorily on some

well-known illusions. But this doesn’t fully establish the validity of the model. It needs to be

tested on some non-illusionary figures and some other types of illusions. For this purpose we

will use a figure:4.7 and a geometric illusion of contrast figure [10], as shown in figure:4.9 . The

human visual system doesn’t perceive an illusion in the 1st figure but we suspect that the present

model might fail in this case. And the second figure produces a sense of illusion in the human

visual system but it is suspected that the present model will not be able to detect the illusion

since it ignores the effect of long-range illusions.

4.2.1 LT Joint figure

Figure 4.7: The LT joint Figure

The stimulus consists of an ’F’ like figure, of which both the arms are of the same length. But

the arms are connected to the vertical shaft by two different type of joints. The upper arm is
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connected by an ’L’ type joint and the lower arm is connected by a ’T’ type joint. Since the present

model takes into account the local interactions for estimating the perceptual length so it is

legitimate to suspect that the estimated length of arms will be different. The contour plot of the

perceptual image along with the parameters used for simulation is shown below.

Figure 4.8: The LT joint contour plot

The length of both the arms were estimated as explained in the Müller-Lyer Illusion analysis.

The difference in length was not significant(around 0.1-0.2% for reasonable kernel sizes), that

is it was within the numerical error bounds. Hence the model survived the test as it predicted

the length of the two different arms to be same, as a normal human being would see. So we can

conclude that the present model is a close approximation of the human visual system in this case.

4.2.2 A suspected True Negative figure

Figure 4.9: A suspected True Negative figure
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This illusion is not a well studied named illusion, although it is quite well suited for our

purpose. This has been described as an illusion of contrast in [10]. In this context, contrast

implies contrast of size. In simple words, parts adjacent to large extents appear smaller and

parts those adjacent to smaller extents appear larger. The figure consists of a horizontal line

segment with vertical notches at four points. Two notches the ends and two notches at middle

separated by a constant distance, only the length of the horizontal line segment differs in the

two figures. This distorts our length perception. The distance between the two notches is same in

both the figures. But we perceive the distance between the notches in the left-hand side figure in

4.9 to be smaller than the same in the right-hand side figure. Next, the image was analysed as

previously described. The contour plot of the perceptual image along with the parameters used in

the simulation is shown below.

Figure 4.10: True Negative figure Contour Plot

The perceptual distance was measured between the two middle notches for both the figures.

The difference in length as percentage of the mean length seemed to be too small(0.5%) for what

we perceive. Although it was in the right direction i.e. the figure with the smaller arms had

longer perceptual length. Different kernel sizes were used in the simulation to see if the effect

was different for different kernel sizes. Table: ?? shows the variation of the difference in length

with kernel size. The difference in length never rose above 1.5% of the mean length, which again

is too small compared to the level of distortion in lengths we perceive.

On being confronted with this disparity, it became necessary to investigate other illusion of

this kind i.e., illusions of contrast. A notable illusion of this kind is Baldwin’s illusion.

19



CHAPTER 4. SIMULATIONS AND RESULTS

Kernel size(n) Difference in length(%)
10 0.51
15 1.45
20 0.85
25 0.84
30 0.69
35 0.69
40 0.65
45 0.64

Table 4.1: True Negative Figure distortion for different kernel sizes

4.2.3 Baldwin’s Illusion

Baldwin illusion was first discovered by Baldwin (Baldwin, 1895). In this illusion, the apparent

length of the standard line is altered by the presence of the flanking squares. The size of the

squares influences the apparent length of the line between the squares. This is a contrast illusion

in the sense discussed in subsection:4.2.2. This illusion is similar to the previous illusion because

in both cases the disparity in perceived length seems to be caused by presence of different sized

extents. The illusion in its current form is shown below:

Figure 4.11: Baldwin’s Illusion

The shafts of both the objects in figure:4.11 are of the same length but the presence of the flaking

squares create a distorted perception that the shaft of object ’A’ is smaller than that of object ’B’.

The process of analysis of this figure was similar to the process previously stated. First, the

perceptual image was plotted and the end points of the perceptual distance measurement program

were determined. Then the perceptual lengths of the shafts were computed. The difference in

length between the two shafts as percentage of the mean length was seemed too small in

comparison to the level of distortion perceived by the human visual system.

To investigate the issue further, the effects for the Baldwin’s figure with different square sizes

were simulated. The input image consisted of the Baldwin’s figure and a control line of same
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pixel length as the shaft of the Baldwin’s figure. This is illustrated in figure:4.12

Figure 4.12: Baldwin’s Illusion Simulation Figure

The disparity between the perceptual length of the shaft and the control line was measured. The

results of the simulation are presented below in a graphical format.

Figure 4.13: Baldwin’s Illusion Simulation Figure

On the X-asis is the size of the side of the squares as a fraction of the shaft length. And on

the Y-asis is the deviation in perceptual length between shaft and the control line segment as a

percentage of the latter. Form the plot it can be deduced that the results are not in agreement

with what is expected. The deviation is expected to be a more or less increasing function of the

wing/shaft length ratio. We tried to compare our results with actual experimental findings in

literature. But no such study with freely available data set could be found. So we decided to

conduct our own experiment and determine the actual nature of the curve. In the next chapter
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we will discuss the experimental procedure ,setup and outcome of the experiment. Then we will

be in a better position to comment on the accuracy of the model.

22



C
H

A
P

T
E

R

5
EXPERIMENTS AND RESULT COMPARISON

5.1 Experiments

Psycophysics can be described as the study of relationship between stimuli and perception. In

psycophysical experiments, experimenters seek to ascertain if the subject can identify a stimulus,

differentiate it from another or describe the magnitude or nature of the difference. In this

experiment focus on visual stimuli and measure the magnitude of distortion produced by certain

illusion causing stimuli. The experiments were repeated several times for each subject because

human perception is subjective i.e., it depends upon context and ambiance, so it fluctuates. As

previously mentioned we will investigate the Müller Lyer Illusion and the Baldwin’s Illusion in

detail, so that we can compare those with the prediction of the model.

5.1.1 Setup and Procedure

The experimental setup is rather simple and the experimental conditions are described in detail

so that the setup can be accurately reproduced. The setup consists of a LCD monitor, chin rest

and a keyboard for data entry by the subject. The distance between the monitor and the chin rest

was adjusted to be 70cm. This seemed to be the most comfortable viewing distance while testing

the setup. Ambient light didn’t seem to affect the results of the experiments, so we conducted

all the experiments in normal lighting conditions. The stimulus figures were 400x400 pixels in

size with a white background in the standard 1024x768 pixel display. The stimulus generation

was done using Python Imaging Library and the data logging part was done using ’Psycopy’, an

open source python platform[13]. The subjects were shown a image and there was a adjustable

reference line. The task was to look at the image and set the length of the reference line equal

to the image. The initial length of the reference line was set at random between 22 pixels ±

23



CHAPTER 5. EXPERIMENTS AND RESULT COMPARISON

shaft length. In each run, a subject was to repeat this task for 23 stimuli, 11 Müller Lyer illusion

figures and 12 Baldwin’s illusion figures.

5.1.2 Results

5.1.2.1 Müller-Lyer Experiment

In the Müller Lyer figures the fanning angle(angle between the shaft and the wings) was varied

between 15◦ to 165◦ in 15◦ intervals. All the 11 figures were shown one by one in a random

order and the subjects were asked to set the reference line equal to the shaft length in each case.

The Müller Lyer figures had 176px shaft length and 56 pixels wing length. The experiment was

repeated for each stimulus three times to minimize the chances of human error in perception.

The result of the experiment is shown in figures:5.1 and 5.2.

Figure 5.1: Müller Lyer Experiment Data, Subject:Mainak, Right Handed Male, Age: 22

From the figures:5.1 and 5.2 we can see that the percentage deviation increases as a function

of the fanning angle. This is the normal expected behavior in case of Müller Lyer Illusion.
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Figure 5.2: Müller Lyer Experimental Data for different subjects

Figure 5.3: Subject:Debasis Figure 5.4: Subject:Kuntal

Figure 5.5: Subject:Ashish Figure 5.6: Subject:Soma
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5.1.2.2 Baldwin’s Experiment

The Baldwin’s experiment was similar, in this case the Müller Lyer were replaced by the Baldwins

figure and the size of the flanking squares were varied. The subjects were asked to adjust the

reference line equal to the shaft length in each case. The shaft length for the Baldwin’s figures

was fixed at 50px for all the figures. The results of the experiment is shown in figure:5.7.

Figure 5.7: Baldwin’s Illusion Experimental Data for different subjects

Figure 5.8: Subject:Ashish
Figure 5.9: Subject:Debasis

Figure 5.10: Subject:Mainak Figure 5.11: Subject:Soma

From the figures:5.7 we can see that the percentage deviation decreases as a function of

wing/shaft ratio. Though the behaviour of the curve seems a bit erratic, this can be rectified by

repeating the experiment with the same subjects. At least this is what was observed with subject

Mainak.
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5.2 Result Comparison

5.2.1 Comparison with Simulations and Inference

The results of the simulation of the same set of figures is shown in section4.13 and 4.4. Comparing

both set of plots it can be seen that the simulation results match qualitatively match with the

experimental results in the Müller Lyer case. But in the Baldwin’s illusion the simulation

predictions do not tally with the experimental results.

Thus we can infer that the present model failed to take in to account some of the influential

factors causing the Baldwin’s illusion.
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6
DISCUSSION AND SCOPE OF FUTURE WORK

We have established that the current model works predicts the some geometric optical illusions

really well, whereas fails to take into account the causal factors for a group of illusions namely

the contrast illusions. So now we are going to address the issue of solving this discrepancy in the

present model. For that purpose we looked up on available literature in this field, to know what

are the ways people have attempted to solve this kind of problems. While doing this we came

across some interesting pieces of literature.

The most notable work seems to be done by a mathematician named Rodolf.K.Luneberg[11],

which was continued by Albert.A.Blank after his death. This was as early as the 1950’s. Luneberg

and Blank formulated a metric for the unperturbed Visual Space, and determined that the Visual

space not inherently euclidean, in particular it is hyperbolic. This formulation was based on the

findings of the parallel alley experiment by Blumenfeld. This is a rich and well formulated theory,

with a sound mathematical backing.

A recent paper in this approach by Werner Ehm et al.[4], have modelled geometric optical

illusion as superposition of "context" and "target". The perception of the target depends on the

context. They have satisfactorily explained the Ehrenstein-Orbison type illusions using the

Poincare’s model of 2-d hyperbolic geometry. They have also tested their predicted results by

performing a pilot experiment. Though this is a interesting development this has models do not

claim to model the human visual system directly. Or in other words they don’t take a bottoms

up approach, rather they deal with that top down approach of high level vision. This is not a

problem in the true sense, we can always apply high level vision processing on whatever low level

features we have.

We have also come across some promising work in the field of low level vision modelling,

that is directly connected to how the biological machinery of vision works. K.Ghosh[6] and A.
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Bakshi[1] have successfully explained brightness assimilation effects using a Extended Classical

Receptive Field. The contrast illusions of size are in a sense negative assimilation, the presence

of larger extents nearby decreases the size of the object in comparison to the control and vice

versa. So this model has some promise of solving the discrepancy. Another interesting feature of

this model is that it is very close to the model we already have so the present model can be easily

modified to this model to check if it works or not.
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